

Code No.: 13348 S

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (E.E.E.) III-Semester Supplementary Examinations, August-2022 Electrical Network Analysis

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	СО	PO
1.	Define impulse and step input functions.	2	1	1	1
2.	Differentiate transient response and steady state response.	2	1	1	1
3.	Under what conditions, response of RLC series circuit for step input is: i) under damped ii) over damped.	2	1	1	1
4.	Give any two applications of second order circuits.	2	1	1	2
5.	Define quality factor of a resonant circuit.	2	1	2	1
6.	Compare linear transformer and ideal transformer.	2	2	3	2
7.	Give the expressions for symmetry and reciprocal of y and ABCD parameters.	2	1	4	2
8.	A two-port network is defined by the relation: $I_1=5V_1+3V_2$, $I_2=2V_1-7V_2$. Calculate the z-parameters.	2	4	4	2
9.	Draw the equivalent circuit of a capacitor in Laplace domain with initial voltage V(0).	2	.1	5	2
10.	Define transfer function.	2	1	5	1
	Part-B (5 \times 8 = 40 Marks)				
11. a)	From the fundamentals, obtain the step response of a series RL circuit.	4	2	1	2
b)	For the circuit shown below, let $Vc(0) = 60 \text{ V}$. Determine Vc , Vx and i_0 fort > 0 .	4	4	1	2
	- 8 Q				
	$12\Omega \lessapprox \qquad 6\Omega \lessapprox v_{\chi} \qquad \frac{1}{3}F \stackrel{+}{=} v_{C}$				
	The state of the s	r :			

Code No.: 13348 S

15. a)	State and explain convolution theorem.	4	2	5	2
b)	Find $v_0(t)$ for the circuit shown below. Assume zero initial conditions.	4	4	5	2
	$75e^{-2t}u(t) \vee \begin{array}{c} + \\ + \\ 2 + 3 \end{array} \qquad 2 \Omega \stackrel{\downarrow}{\geqslant} v_{\sigma}(t)$				
16. a)	A simple RL series circuit is excited by a sinusoidal voltage source. The circuit is initially relaxed. At t=0, the switch is closed find the response i(t) for the current. Source voltage is $VmCos(\omega t+\phi)$.	4	2	1	2
b)	Find the complete response 'v' for t > 0 in the circuit shown below	4	4	1	2
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
17.	Answer any two of the following:				
a)	Derive an expression for energy stored in a coupled circuit.	4	3	3	2
b)	The Z-parameters of a two- port network are Z_{11} =15 Ω , Z_{12} = Z_{21} =6 Ω and Z_{22} =24 Ω . Determine the ABCD parameters.	4	4	4	2
· c)	The output of a linear system is $y(t) = 10 e^{-t} \cos 4t u(t)$ when the input is $x(t) = e^{-t} u(t)$. Find the transfer function of the system and its impulse response.	4	4	5	2

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	37.50%
iii)	Blooms Taxonomy Level – 3 & 4	42.50%
